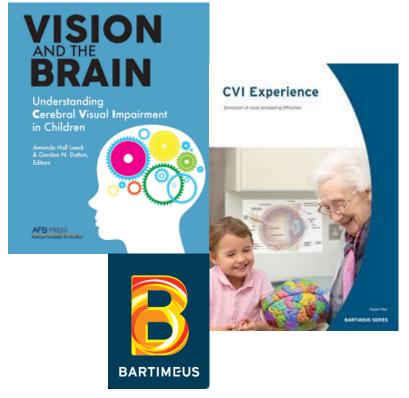
# Cerebral visual impairment in the classroom


Cathy Williams Reader in Paediatric Ophthalmology University of Bristol

Consultant Paediatric Ophthalmologist, Bristol Eye Hospital, UK



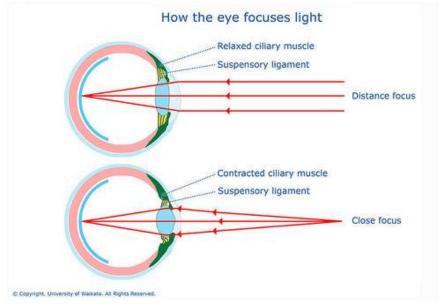
#### Cerebral Visual Impairment (CVI)

- Children use vision to learn
- Abnormalities in brain-related visual functions can affect many aspects of learning
- Specific examples:
  - Reading
  - Mathematics
  - Social interactions (Autistic Spectrum Disorders)





## Reading


- Focussing (accommodation)
- Field loss
- Eye movements
- Visuocognitive
  - Simultanagnosia (clutter)
  - Recognition problems (agnosia)
  - Visual attention disorders

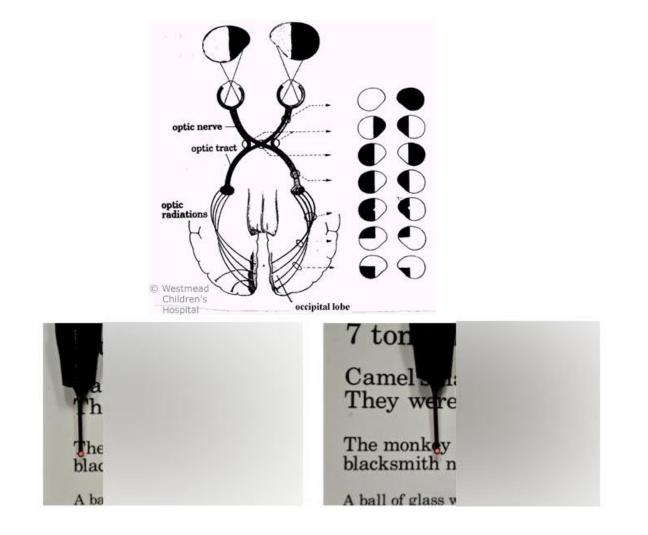





### Reading and focussing problems

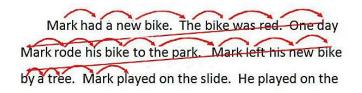
- Near vision depends on adjusting the power of own lens
- Some children unexpectedly poor
  - Premature
  - Cerebral Palsy
  - Down syndrome
- Some drugs inhibit focussing
  - Hyoscine or scopolamine patch
- Lenses may improve other aspects eg oculomotor (AMR research)






Action Medical Research- Dr Maggie Woodhouse




#### Reading and Field loss or inattention

- Field testing difficult in children
- Inattention vs Absolute loss
- Types of loss
  - Hemianopia
    - miss end of word (Right HH)
    - miss start of line (left HH)
  - Inferior
  - Patchy
  - General constriction
- Head, body posture, position in class may help



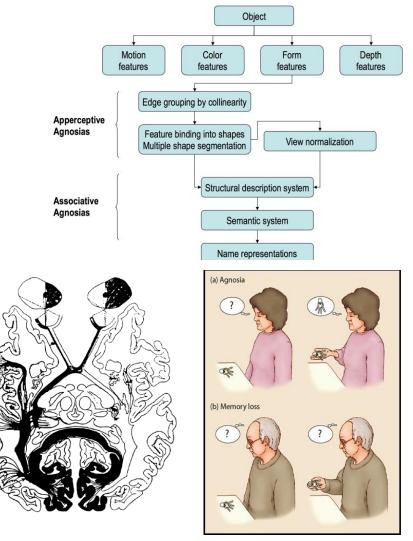
## Reading and Eye movements

- Saccades to reposition eyes
- Microsaccades to move between words
- Affected by text
- May co-exist with reading problems, rather than cause
- Cardiff research:
  - Prof J Erichsen, Dr M Woodhouse and Dr Flors Navarro
  - eye tracking in non-reading tasks
  - children with vs without reading problems



Eyecanlearn.com








## Reading and Visual Agnosias (i)

- Impairments of visual recognition – can be very specific
- NOT due to memory loss or lack of understanding
- Many subtypes
  - Lexical agnosia "word blindness"
  - Difficulties in recognition of letters (but not words or numbers)
  - Prosopagnosia (face)


Dejerine J: Sur un cas de cecite verbale avec agraphie, suive d'autopsie. CR Societè du Biologie 43:197, 1891





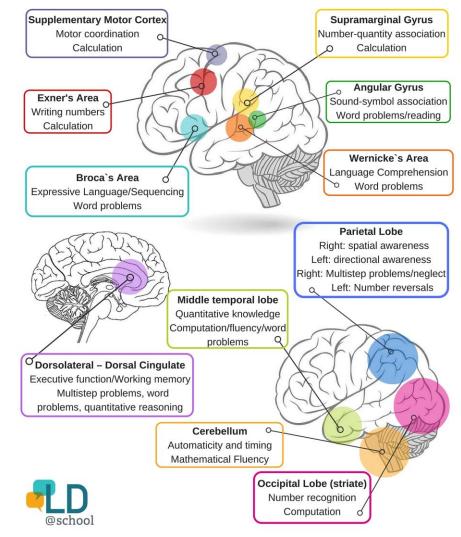
#### Reading and Visual agnosias (ii)

- Simultanagnosia
  - Impaired ability to discriminate target surrounded by distractors
- "Crowding Ratio"
  - Single optotype acuity/crowded
  - > 2 (3 lines) abnormal after age 6
  - Dekker et al 2012. Strabismus, 20(2), 49–54, 2012



Harrison et al. *Journal of Vision 14(1):21*, 1-16.2014





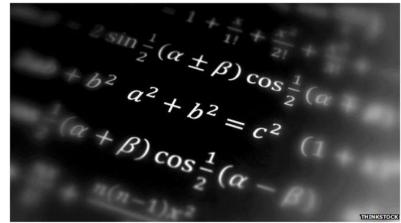

#### Mathematics

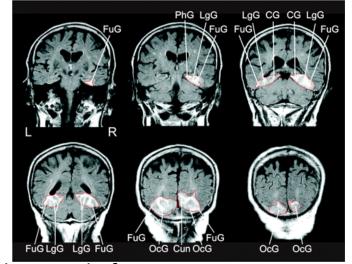
- Multiple brain areas
  - Frontoparietal
  - Temporal network
  - Motor, basal ganglia and CBM
- Dorsal visual stream
  - Visuospatial "Where"stream
  - Correlates with numerical judgement
  - Number line
- Ventral visual stream
  - Recognition
  - Computational skills

#### • MATH AND LDS •

#### **BRAIN AREAS AND MATH SKILLS**




SHINING THE LIGHT ON VISION EDUCATION 2017 CONFERENCE BRISBANE 8TH - 12TH JANUARY

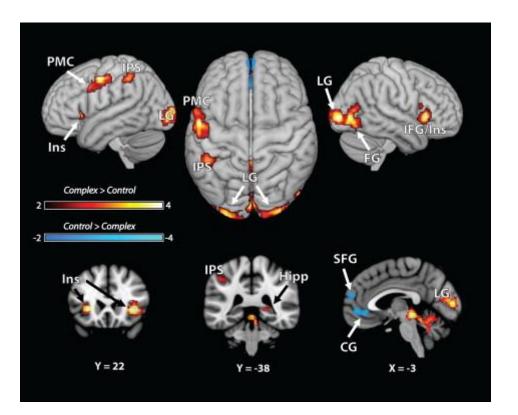

. .

https://www.ldatschool.ca/about-us/

#### Mathematics and Visual agnosia

- Recognition "what"
- Occipital and temporal lobes involved in mathematics
- Occipital lesions can cause impaired number, shape or symbol recognition
- Other visual functions eg acuity, visuomotor may be unaffected as in PCA territory bilateral stroke

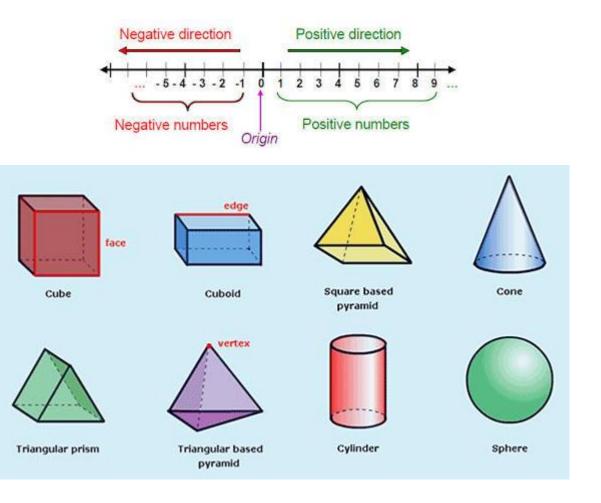





Karnath et al. Journal of Neuroscience 6 May 2009, 29



#### Mathematics skills


- Many maths related locations in brain parietal and frontal lobes
- Overlap with dorsal visual stream and ventral
- Developmental changes as children use more specific areas



Metcalfe et al. Developmental Cognitive Neuroscience Volume 6, October 2013, Pages 162–175

#### Mathematics and Dorsal Stream

- Number line
- Bigger vs Smaller
- Visuospatial configurations





## Social Communication and Autistic spectrum disorders

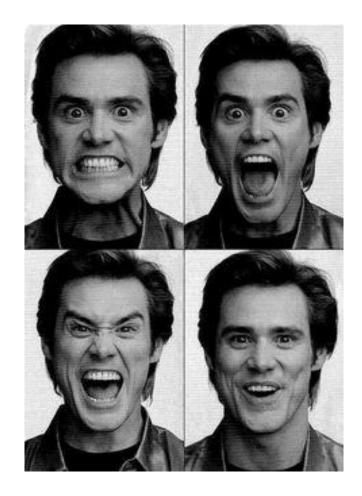
- Many aspects of altered cerebral visual function reported
  - Face recognition
  - Facial emotion recognition
  - Colour
  - Motion
  - Superior abilities in visual search, perceptual grouping "Weak central Coherence"





#### ASD and Facial identity recognition

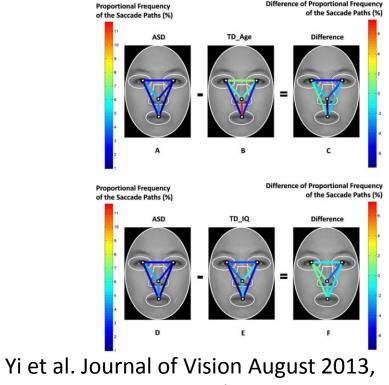
- Often reported in ASD
- Specific neurones for prosopagnosis
- Other visual agnosias occur in ASD eg music
- Prosopagnosia may occur alone (autosomal dominant)
- Central field, contrast, motion also all needed for face recognition




Jiang et al.NeuroImage: Clinical 2 (2013) 320–331



#### ASD and Facial expressions


- Key feature of many individuals with ASD
- Impaired ability to recognize emotion in facial expression
- May be more severe if associated with language impairment
- ASD ability very reduced if poor contrast so low spatial frequency
- Biological motion, contrast and stereoacuity also associated with ability





#### Ocular motility in ASD

- Abnormal gaze behaviour
  - Different features of faces
  - Reduced fixation time
- Strabismus
- Pursuit eye movements
- Seen in relatives
- Shared feature with other neurodevelopmental disorders eg schizophrenia



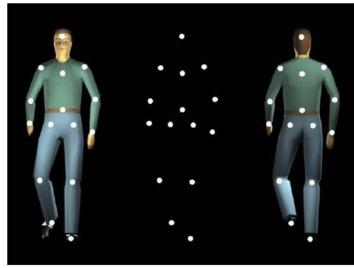
Vol.13, 5. doi:10.1167/13.10.5





#### ASD and Colour

- Reduced sensitivity to colour, eg in visual search
- Sometimes strong colour preferences






#### ASD and seeing movement

- Impaired motion coherence ("rain") thresholds
- Impaired biological motion
- ASD individuals not better at people motion vs object motion
- Difficulties in playground, road, watching films

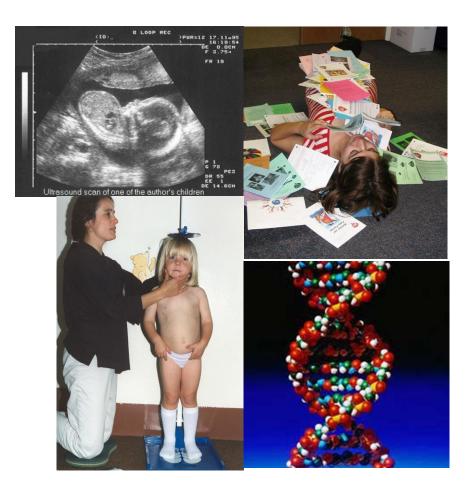






#### Weak central coherence: details focussed

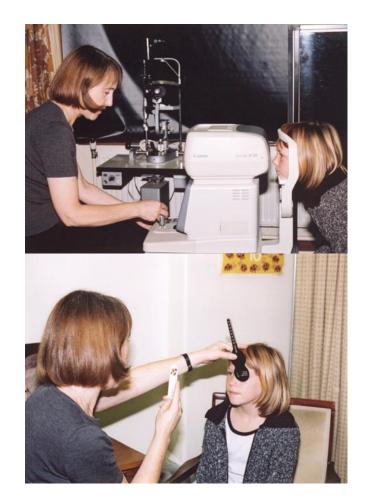
- "Can't see the wood for the trees"
  - Deficit in "global" processing?
  - Bias towards local processing?
  - Co-existing with, not cause of social/communication disorder?
- Superior performance on some visual perceptual tests
  - Visual search
  - Embedded figures







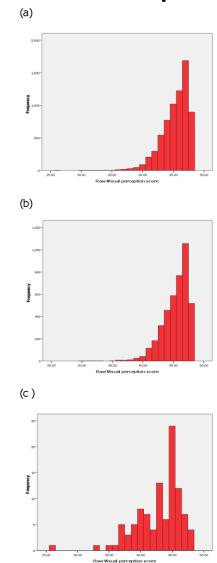

## Examples from Avon Longitudinal Study of Parents and Children


- All children born in Avon 1991-1992
- Approx 14,000 children
- Most detailed cohort study in the world
- Data collection by questionnaire, interview, direct tests, genetic samples, linkage to health and education
- Diagnoses, traits and outcomes available





#### Vision data in ALSPAC


- Orthoptic assessments
  - 6 monthly to 3.5yr (n=1000)
  - At age 7 (n=7500)
- Autorefraction
  - 7, 10, 11, 12, 15y
- Central visual functions
  - Stereoacuity 7-15y
  - Contour integration 11 -12
- Prof Dutton Qs at age 13-parent report of behaviour suggesting CVI





### Questions on CVI in population sample 13 yr olds in ALSPAC study

- Williams etc al PLoS ONE 6(3): e14772. doi:10.1371
- 12 questions to elicit responses indication CVI
- Parent reported
- All scored 1-5
- Unimodal distribution
- N=7000
- Range of responses in children with ICD10 diagnoses





#### Distilling responses into factors

| Question                                                                                                                                                                                                                                                                                                                                                                              | Factor 1 (20.8%)                                                                                                                                 | Factor 2 (11.5%)     | Factor 3 (10.4%)      | Factor 4 (8.5%)   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------|
| Recognises close family<br>Recognises friends<br>Recognises people from photo<br>Loses objects around house<br>Difficulty grasping objects<br>Difficulty with step vs. line<br>Find objects on patterned carpet<br>Find objects in complex pictures<br>Misjudges doorways/corridors<br>Finds way around house<br>Difficulty seeing things in distance<br>Find way in new surroundings | $\begin{array}{c} \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \\ \checkmark\\ \\ \\ \\ \\ \\ \\ $ | $\frac{1}{\sqrt{2}}$ | <b>√</b> √<br>√√<br>√ | $\sqrt{\sqrt{2}}$ |

#### Associations with educational attainment

- Factor Analysis: 3 factors
  - Seeing-things-in-clutter
  - Visual-guidance-of-movement
  - Facial recognition
- Compared with standardised school results (SATS) age 14
- Adjusted for social class, IQ, parental education, sex





#### Mean Factor scores vs School results at 14

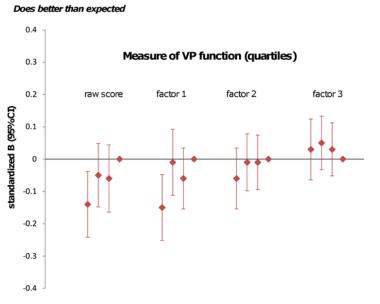
- Whole score and Factors 1 (clutter and Factor 2 (visuospatial) related to reading achievement
- Whole score and Factor 2 (visuospatial) related to mathematics achievement
- Similar to earlier SATS results
- Same in imputed dataset

| OUTCOME     | VP ABILITIES  | CASES WITH COMPLETE DATA |         |                                     |         |                     |       |  |  |
|-------------|---------------|--------------------------|---------|-------------------------------------|---------|---------------------|-------|--|--|
|             |               | Unadjusted (n=4512)      |         | Model 1 (n=2968)                    |         | Model 2 (n = 2724)  |       |  |  |
|             |               | β (95% Cl)               | р       | β (95% CI)                          | р       | β (95% CI)          | р     |  |  |
| Reading     | All Questions | 0.04 (0.03, 0.06)        | <0.0001 | 0.03 (0.01, 0.04)                   | <0.0001 | 0.01 (0.00, 0.02)   | 0.025 |  |  |
|             | Factor 1      | 0.10 (0.07, 0.13)        | <0.0001 | 0.05 (0.02, 0.08)                   | 0.001   | 0.02 (-0.01, 0.05)  | 0074  |  |  |
|             | Factor 2      | 0.03 (-0.01, 0.06)       | 0.063   | 0.03 (0.00, 0.05)                   | 0.061   | 0.02 (-0.01, 0.04)  | 0.178 |  |  |
|             | Factor 3      | 0.01 (0.01,0.05)         | 0.204   | 0.01 (-0.03, 0.04)                  | 0.725   | -0.01 (-0.04, 0.01) | 0.286 |  |  |
| Mathematics | All Questions | 0.07 (0.05, 0.09)        | <0.0001 | 0.02 (0.00, 0.03)                   | 0.016   | 0.00 (-0.02, 0.01)  | 0.395 |  |  |
|             | Factor 1      | 0.14 (0.11, 0.18)        | <0.0001 | 0.02 (-0.01, 0.06)                  | 0.150   | -0.01 (-0.03, 0.01) | 0.435 |  |  |
|             | Factor 2      | 0.06 (0.03, 0.10)        | <0.0001 | 0.03 (0.00, 0.06)                   | 0.026   | 0.00 (-0.02, 0.02)  | 0.974 |  |  |
|             | Factor 3      | 0.01 (-0.03, 0.04)       | 0.759   | -0.001 (-0.04, 0.03)                | 0.644   | -0.01 (-0.03, 0.01) | 0.491 |  |  |
|             |               |                          |         | ALL CASES – IMPUTED DATA (n = 4512) |         |                     |       |  |  |
|             |               |                          |         | β (95% Cl)                          | р       | β (95% CI)          | р     |  |  |
|             | All Questions |                          |         | 0.02 (0.01, 0.03)                   | <0.0001 | 0.01 (-0.01, 0.02)  | 0.218 |  |  |
|             | Factor 1      |                          |         | 0.04 (0.02, 0.07)                   | 0.002   | 0.01 (-0.01, 0.03)  | 0.523 |  |  |
|             | Factor 2      |                          |         | 0.03 (0.01, 0.05)                   | 0.042   | 0.01 (-0.01, 0.04)  | 0.197 |  |  |
|             | Factor 3      |                          |         | -0.05 (0.03, 0.02)                  | 0.918   | 0.00 (-0.02, 0.02)  | 0.812 |  |  |
| Mathematics | All Questions |                          |         | 0.02 (0.01, 0.03)                   | 0.001   | 0.00 (-0.01, 0.01)  | 0.348 |  |  |
|             | Factor 1      |                          |         | 0.03 (0.01, 0.06)                   | 0.012   | -0.01 (-0.03, 0.01) | 0.356 |  |  |
|             | Factor 2      |                          |         | 0.03 (0.01, 0.06)                   | 0.015   | 0.00 (-0.02, 0.02)  | 0.985 |  |  |
|             | Factor 3      |                          |         | 0.01 (-0.04, 0.01)                  | 0.354   | -0.01 (-0.03, 0.01) | 0.125 |  |  |

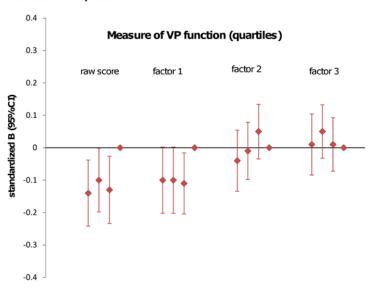
Legend for Table 3.

"All questions" refers to the score obtained by summing for each child all responses to questions about visual perceptual (VP) abilities.

\*Model 1 is adjusted for Age at KS3 testing; Gender; Maternal education; Highest maternal/paternal social class; ICD10 diagnosis; visual problems, born at less than 37 weeks gestation; admitted to a Special Care Baby Unit in first month; low birthweight; total IQ.


\*\*Model 2 is model 1 and additional adjustment for KS2 results.

doi:10.1371/journal.pone.0014772.t003




#### Results at 14 by quartile of CVI skill

#### Reading



#### Maths



#### Does better than expected

Does worse than expected

Does worse than expected



#### Summary

- In general population, responses suggesting brain-related vision skills predict school attainment
- Brain related vision problems may co-exist with and/or contribute to academic difficulties including in reading, mathematics and social interaction
- Children with ASD may have impaired or superior vision processing





## Thank you!

- Bristol Special Needs Vision Team (Sue Fraser, Helen McCarthy, Julie Parker, Penny Warnes)
- Child Health Community Partnership
- Bristol Sensory Support Service (Sue Rogers)
- The ALSPAC Study Team
  - Families
  - Staff
  - Funders: MRC, Wellcome, University of Bristol
- Prof Jean Golding
- Prof Gordon Dutton
- Dr M Woodhouse





