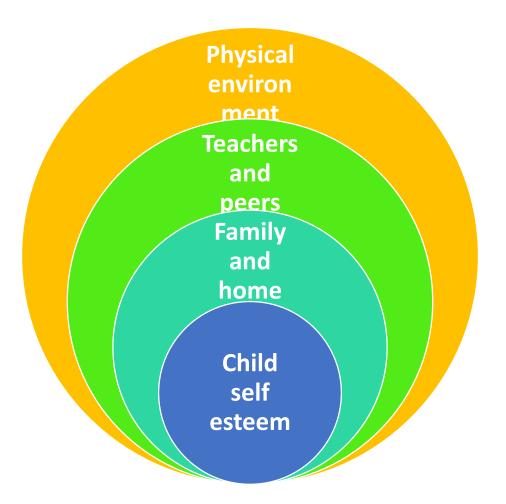
Cerebral Visual Impairment: How to help

Cathy Williams

Reader in Paediatric Ophthalmology


University of Bristol

Consultant Paediatric Ophthalmologist, Bristol Eye Hospital, UK

Multilevel approach

- Recognise the problem
 - Child doesn't blame themselves
 - Teachers/parents modify expectations
- Environmental modifications
 - Setting (home, school)
 - Work and play materials
- Treatment
 - General health
 - Ocular: glasses, ptosis
 - Practice makes Perfect? Neuroplasticity
- Prevention

What's already known...

- Preliminary systematic/scoping review
- BJO 2013
- 5 controlled trials
 - Glasses
 - UV paint
 - Training/Practice for eye movements

How to help children with neurodevelopmental and visual problems: a scoping review

C Williams, K Northstone, C Borwick, M Gainsborough, J Roe, S Howard, S Rogers, J Amos and J M Woodhouse

Br J Ophthalmol 2014 98: 6-12 originally published online October 24, 2013

doi: 10.1136/bjophthalmol-2013-304225

Child mental health

- Multiple government initiatives to improve mental health and well-being
- Child- and parent-derived outcomes in PenCRU study
 - Communication
 - Emotional well-being
 - Pain
 - Self-care
 - Mental Health

Morris et al. Health and Quality of Life Outcomes (2015) 13:87 DOI 10.1186/s12955-015-0284-7

RESEARCH ARTICLE

Open Access

Meaningful health outcomes for paediatric neurodisability: Stakeholder prioritisation

and appropriateness of patient reported

outcome measures

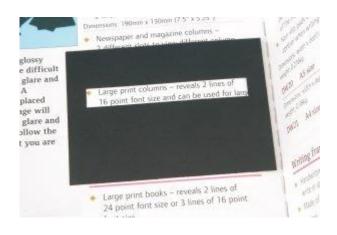
General treatments

- Overall Health
 - Sleep
 - Diet

- Drugs eg antiepileptics
- Hormones eg thyroxine
- Vision and function can improve if general health improves

Ophthalmic interventions

- Laser or CLs or surgery for high refractive error
- Amblyopia treatment
- Sticky eyes
- Lid surgery

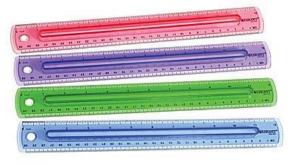

Environmental Modifications - decluttering

- Classroom
 - Walls
 - Work area
 - Worksheets
- Home
 - Play area
 - Clothes

Fisher et al 2014 Psychological Science

Environmental Modifications- adapt to field or eye movement problems

- Position in class- defect to wall
- Try reading vertically (if homonymous hemianopia)


- Own work (instead of copying)
- Lectern or book rest
- Markers to help positioning

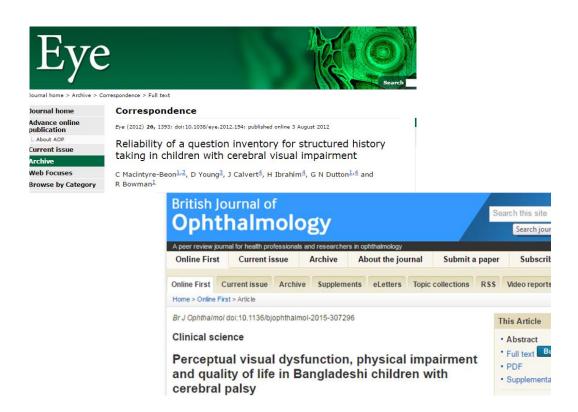
"Henry's being mean to me." Don't be prind, Henry's should Mum. Peter is a popopicie, Peter is a oppicie, 'chanted Henry, But then Peter did semething ronge, Instead of Screening for Mum, Peter started writing, low everyone who buyet my exestipage: will know how horn'd you will be to be the peter of the horn of the peter of the

Environmental modifications - visuospatial prompts

- Large visual "clues" may help to develop more accurate visual guidance of movement
 - Steps
 - Corridors
 - Route-finding
- Use of tactile support eg walker, bike

Environmental modifications – multisensory approach

- If vision cannot convey the information needed supplement with
 - Tactile
 - Auditory
- Observational studies suggest multi-sense can promote more advanced behaviour



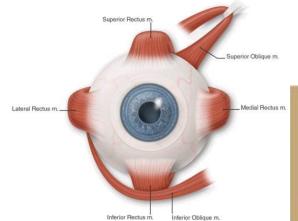
Behavioural modifications: INSIGHT

- Professor Gordon Dutton and Mr R Bowman
- INSIGHT questionnaire and database
 - Discriminates between exprems with/without CVI (MacIntyre-Beon et al Eye 2012)
 - Agrees with direct tests in prems (Geldof et al Pediatric Research 2015, 78, 190–197)
 - Agrees with direct tests and predicts QoL in children with CP in Bangladesh (Mitry et al 2015)

 Questions and Solutions curated by Prof K Saunders (Ulster)



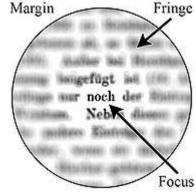
http://biomed.science.ulster.ac.uk/research-institute/ ulster-vision-resources/resources/ resources-for-professionals/cvi-assessment/

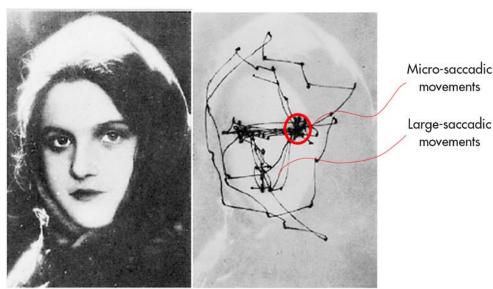

Treatments to restore/improve function

- Practice?
 - Eye movements
 - Visuocognitive/perceptual skill
- Reinforce with other senses
 - Auditory prompts
 - Proprioception/motor
- Neuroplasticity promote if possible

Active Vision

- Eye movements key to visual attention
- Peripheral retina not like fovea
- Constant checking of different places in visual field
- Closely linked to cognitive processes
- Eye Movements often abnormal in children with neurodevelopmental problems





Treatment for poorly controlled eye movements

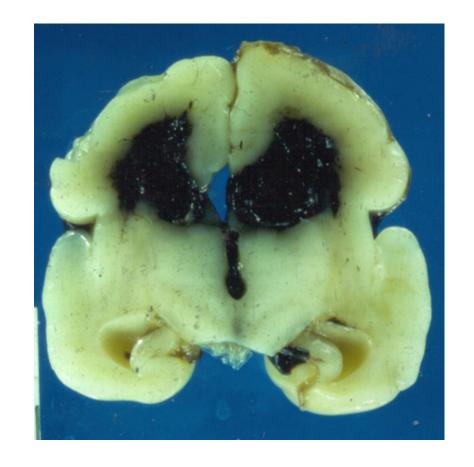
- In many brain disorders
 - impaired smooth pursuit (tracking)
 - saccadic (gaze changing) eye movements
- Treatments/exercises on offer
- Do they work? On NHS?
- Need for a randomised trial...

Prevention

- Public Health
 - Reduce premature births
 - Smoking in pregnancy
- Very early interventions
 - Cooling
 - Xenon
 - DRIFT

REVIEW

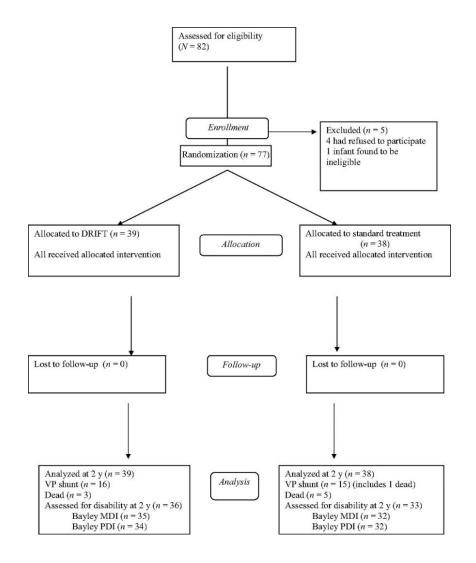
Therapeutic hypothermia for hypoxic-ischaemic encephalopathy in the newborn infant


Marianne Thoresen and Andrew Whitelaw

Curr Opin Neurol 18:111-116. @ 2005 Lippincott Williams & Wilkins.

Prevention- DRIFT

- DRainage, Irrigation, Fibrinolysis Treatment
- For premature infants with intraventricular haemorrhage and ventricular dilatation


DRIFT intervention

DRIFT study

- Randomised controlled trial
- Bristol, Poland, Glasgow
- 77 children randomised
 - DRIFT
 - Standard (meticulous) care
- All received intended treatment
- 8 died

DRIFT – Outcomes at age 2

- Primary Outcome was any of:
 - Death
 - IQ < 55
 - Blind (SSI)
 - Deaf
- At 2 yrs (corrected)
 - 54% (DRIFT) vs 71% (Standard) died or severe disability aOR = 0.25 (0.08 to 0.82)
 - Amongst survivors 31% (DRIFT) vs 59% (Standard) had IQ<55 aOR 0.17 (0.05 to 0.57)

Pediatrics

April 2010, VOLUME 125 / ISSUE 4

Randomized Trial of Drainage, Irrigation and Fibrinolytic Therapy for Premature Infants with Posthemorrhagic Ventricular Dilatation: Developmental Outcome at 2 years

Andrew Whitelaw, Sally Jary, Grazyna Kmita, Jolanta Wroblewska, Ewa Musialik-Swietlinska, Marek Mandera, Linda Hunt, Michael Carter, Ian Pople

Advertising Disclaimer

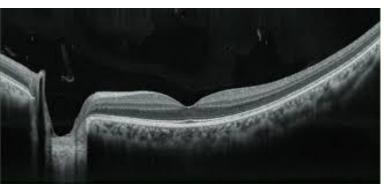
DRIFT10 -overview

- Age 2 early to decide on outcome for children
- DRIFT10 study designed to assess outcomes of DRIFT participants at 10-11 yr
 - Cognitive(BAS)
 - Motor (Motor ABC and GMFCS)
 - Visual
 - MRI and fMRI
 - Behaviour (SDQ)
 - Health Service Use and other costs
 - Quality of Life ((HUI)
- Primary Outcome at 10-11 is severely reduced IQ

DRIFT10 – vision data collected

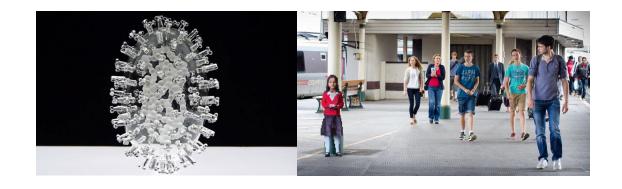
- GD CVI-questions
- Acuity
- Alignment
- Contrast Sensitivity
- Refraction
- Eye Movements
- Visual Fields
- Stereoacuity
- Visuocognitive/Peceptual
 - Postbox
 - Rectangles
 - Contours

Summary of DRIFT10 findings so far


- DRIFT is a useful intervention to help babies who suffer IVH
- Important to establish whether the procedure harms vision
- Clear evidence that visual system reflects extent of intracranial damage in many ways
- Preliminary results suggest possible improvement (in DRIFT group) in visuocognitive/perceptual outcomes
- Must include vision outcomes in future trial

Summary of support for CVI

- Multilevel approach needed
 - Recognition
 - Environments
 - Treatment
 - Prevention
- New studies suggest effective therapies will be available
- "Eye" vs "Brain" increasingly less clearcut
- Important to assess aspects of vision routinely in at risk children
- How to deliver this equitably?
 Training and Capacity building?



Spreading the word...

- Kerry Tait visited 2015 and showed artwork from artist residence project
- Inspired Bristol project to get artist-in-residence Luke Jerram
- Leverhulme Trust- will fund work to promote understanding of brain-related vision problems in 2017

Teams and collaborators

- Bristol Special Needs Vision Team (Sue Fraser, Helen McCarthy, Julie Parker, Penny Warnes)
- Child Health Community Partnership
- Bristol Sensory Support Service (Sue Rogers)
- NIHR, MRC (EBI)
- The CVI Project team (Anna Pease and Rose Watanabe)
- Prof Iain Gilchrist and Dr Rosie Clark(University of Bristol)
- Emerson's Green and Belgrave Schools
- WESC and Dr J Waddington
- Dr Karen Luyt and DRIFT study team
- PENCru and DR C Morris
- Families in advisory groups
- Prof G Dutton, Prof K Saunders, Bartimeus (Rotterdam), Prof Lea Hyvarinen, Dr M Woodhouse

