

# Visid

## Accessible computional thinking curriculum

- Draw a circle
- ad two eyes
- ad a crown
- ad two wings
- and ad four legs

- Draw a circle for a body
- ad two eyes on the body
- and a crown
- the creature has two wings
- and four legs

## 21th century skills



## Digital literacy

## Changing society, industry 4.0 Not only consumers



Formulating a problem, way of thinking Expressing a solution so a computer can assist

Computational Thinking *≠* programming



#### Waarom?

Computational thinking:

- complements and enhances your existing high school curriculum.
- teaches students how to solve complex problems in a variety of disciplines.
- leverages the strength of computer technology to solve real-world problems.
- and lowering the barrier of using computers!!



Decomposition Breaking a complex problem down into smaller, more manageable parts

Pattern recognition Identify patterns or trends within a problem

Abstraction Identify specific similarities and differences among similar problems to work towards a solution

Algorithm Develop step-by-step instructions for solving a problem







## Unplugged

# Way of thinking In line with what is known



### Meedoen mogelijk maken!

#watkanwel #possibilities

empowerment!

concepts fit well to our students



Breaking a complex problem down into smaller, more manageable parts

Why?

- number of minor problems are more easily solved than one very large
- to increase understanding
- team assignments are possible







## Determine patterns, trends and regularities in data

## Why?

By recognizing patterns we can:

- predict
- make rules
- solve more general problems







Abstraction is about simplifying things; identify what is important without worrying about the details and differences.

#### Why?

Abstraction allows you to control complexity A solution that can be used for various problems







A set of instructions which, when executed step by step in the correct order, lead to a predetermined goal.

#### Why?

to find the most effective and efficient algorithms;

#### solving a problem

- in the fastest time
- with the least means or
- in the most effective way





#### Approaches

Repeating a loop, so that something is repeated

Variables A value that varies and can be compared with others

Debugging finding faults and debug them

Conditions (if..., then...) something that is done when certain conditions are met

Function (subroutine) a reusable "help" program within the "main"



## Get to work



## Another one...



#### Visio lessons

Three levels in primary school Combination of elements CT Daily life and school environment Tactile materials

Unplugged lessons



#### Lower classes

#### Learn by doing

#### Translation from body to materials



## Combination of elements Translation to technique



## Binair counting



#### Working independently

#### Translation to programming and terminology



#### Visio curriculum

#### Online

- Box with materials
- Connection with current lessons
- Short preparation time
- Teachers training



#### Curriculum Computational Thinking

Research with the University of Leiden 'inclusive programmingtools'

